INDIA DEFENCE CONSULTANTS

WHAT'S HOT? –– ANALYSIS OF RECENT HAPPENINGS

THE INDIA–PAKISTAN NUCLEAR STORY

 

An IDC Analysis

 

New Delhi, 02 May 2002  

We at IDC have offered a plethora of analyses on India’s nuclear and missile capabilities. Earlier we reviewed Ashley Tellis’s voluminous book on the subject. He was lucky to meet all and sundry involved with India’s Nuclear Establishment but then he was from RAND Corporation. Their main customer is the Government of USA so he had an Agenda and IDC stands by the statement, as we have argued it out at seminars. USA has changed goal posts from sanctions to rein in India’s Nuclear ambitions to now acquiescing to the fait accompli. Vajpayee will go down in history for the SHAKTI blasts. (Admiral L Ramdas’s and Arundhiti Roy’s vehemence notwithstanding.) Tellis is now enjoying the fruits of his hard work and is an American of Indian origin in India advising the American Ambassador in New Delhi.

We all do have agendas, and Ashley tried to convey India’s recessed forces and separated bombs at various locations as the most sensible and economical in tune with ‘A NO FIRST USE DOCTRINE’, that India’s National Security Adviser Brajesh Misra released. It had the stamp of K Subhramanyam’s deep knowledge, who is India’s know all on Defence, so India swallowed it lock stock and barrel. But then K Subrahmanyam is a journalist now and writes anecdotes of the past and philosophy these days. He is not in tune with ground practicalities, which is what the Armed Forces have to deal with.

Now we have a CDS equal to the Chiefs and the Nuclear Force under him yet to be formed. The doctrine is of no value unless it is implemented. We have no CDS, no Nuclear Command or Strategic Force and the Army and the IAF were at loggerheads on the issue. India’s NSA who scripted all this and the NSAB which meets often has a duty to sort it out and may have done so. If it is sorted out then IDC congratulates the powers that be. The PM, as enshrined in the Constitution, must be fully aware of the Triggers and Procedures and the Ops Plans and hopefully the WAR BOOK has been amended.

Deterrence is the raison d’etre of Nuclear Power and this needs publicity, but then India is silent and may be we will learn the new way by a Nuclear Forces Act or some such intervention. Pakistan has a Rocket Strategic Command and even if it is bluff the world has taken note and Kargil was a good example. Brajesh Misra is less heard of or seen these days.

The IDC looked at Raj Chengappa‘s book on India’s Nuclear Story, which was juicy on details (like Journalists are wont to be) and good reading, and had the INDIA TODAY stamp. We also looked at Sanjay Badri Maharaj’s book ‘The Armageddon Factor’ and that was professional but he could not give all that we thought a thinking person wants to know.

Now one of our readers  N S Mirpuri who does research as a hobby has done a great job of compiling what we may term as a ‘Busy Man’s Guide to India and Pakistan’s Nuclear Capabilities’ and we offer it to our readers. He has quoted K Subrahmanyam and IDC adds that the SU 30 MKI are also capable of Nuclear delivery as are the F-16s of Pakistan.  

 

THE INDIA–PAKISTAN NUCLEAR STORY

By

N S Mirpuri

That India can build nuclear weapons has been an established fact since 8:05 18 May 1974 (IST), when India exploded a 6-10 kt plutonium bomb 107 meters underground in the Thar Desert of Rajasthan. This test, known as "Smiling Buddha", the PNE (for "Peaceful Nuclear Explosive") or (now) Pokhran-I, was located at 27.095 deg N, 71.752 E, which is usually identified as being "Pokhran" (or "Pokaharan"), the name of a town that is 24.8 km southeast from the test site.

India maintained at the time, and long afterward that the test was for peaceful purposes, and that it possessed no nuclear arsenal. As one of the principal scientists on the project (who was also a former junior Defense Minister, and a former director of BARC - the "Indian Los Alamos"), Raja Ramanna conceded on 10 October 1997 the former was never true. The Press Trust of India quoted him as saying "The Pokhran test was a bomb, I can tell you now." He was also quoted as saying later: "An explosion is an explosion, a gun is a gun, whether you shoot at someone or shoot at the ground." He said the "peaceful" label had come "from the political side", adding: "I just want to make clear that the test was not all that peaceful."

But surprisingly, the latter contention - that India had no nuclear arsenal - remained true for more than a decade after Pokhran-I.

A key motivation for India's nuclear program is its concern about nuclear-armed China, which faces India along much of its northern border. Disputes about this border exist: China currently occupies the Aksai Chin plateau adjacent to Ladakh, Kashmir in Northwest India; India occupies the North-East Frontier Agency claimed by China. In October 1962 China invaded India, an attack that India was powerless to respond to (China eventually withdrew voluntarily later that year). Although China and India have had better relations in recent years, the rise of China's economic and military strength, coupled with the simultaneous decline of Russia which had acted as a counterweight to China, has caused India to view China as a long-term strategic threat. India has also fought repeatedly with Pakistan since 1947, and holds Kashmir - Muslim inhabited territory claimed by Pakistan. Pakistan's own nuclear program now serves as justification for perpetuating India's own program, although Pakistan did not acquire weapon capability until a decade after India's nuclear test. India also has aspirations to being a major power on the Asian continent, and a major player in world affairs, and views nuclear weapons as a necessary component of acquiring this status.

Although India first tested a nuclear explosive in 1974 it did not become a nuclear weapons state - in the sense of having the ability to deliver nuclear weapons until 1986-88 when, according to Dr. Sanjay Badri-Maharaj author of The Armageddon Factor, a rudimentary delivery system was in place [Indian Express, 18 June 2000]. This presumably refers to a developmental delivery system based on the Mirage 2000 that began development in 1986, after an attempt to integrate a DRDO developed nuclear bomb with the Jaguar fighter-bomber failed. This system provided India with a usable but limited nuclear weapons capability, but the weapon system did not actually enter service until it passed a full field drop test in May 1994 at Balasore, though most observers thought that this milestone had been passed years before.

The US CIA testified before congress in 1993 that it did not believe that India maintains assembled or deployed nuclear weapons, although it believed India was producing weapon components. The CIA's HUMINT (human intelligence, as opposed to electronic intelligence) regarding India's nuclear program is famously poor however (witness the U.S. intelligence communities surprise about the 1998 tests) so it cannot be accorded great weight; nonetheless it could be true that in 1993 India still had not taken the step of maintaining weapons in a ready-to-use state. There is a vague report though [Chengappa 2000; pg. 418] of "a few" weapons existing as early as the early 1980s. Chengappa relates that hardened concrete bunkers were built in the early 1980s at Mumbai to house India's weapons plutonium stocks, and a few weapons. Gen Sundarji was shown these weapons in the mid-80s, an unusual step since the military chiefs of staff had not been briefed on India's nuclear capability even as late as 1990. These weapons may not have been kept fully assembled, but there is little doubt that India could have made them ready in a matter of hours (or days at the most).
India has several aircraft that are nominally considered "nuclear capable", the Mirage 2000, Mig-27, and the Jaguar. Due to the cost of integrating and qualifying an aircraft for nuclear delivery, and maintaining a cadre of specially trained pilots, it is unlikely that India would choose to deploy nuclear weapons on more than one or two aircraft types. Only the Mirage 2000 is known to have been qualified as a nuclear delivery platform, and the Jaguar is known to have been abandoned for nuclear weapons delivery due to technical problems. Thus it may be that the Mirage 2000 remains the sole air breathing nuclear weapon delivery system.

India has developed short and medium-range nuclear-capable missiles. These are the Prithvi (range 250 km, payload 500 kg), and the Agni-II (range 2500 km, payload 1000 kg).

The first operational capability of a missile deliverable nuclear warhead was probably soon after the official deployment of the Prithvi SS-250 missiles in September 1997, which occurred after the successful completion of integration and testing of the warhead and missile during 1996-97. Reportedly four nuclear armed Prithvis were deployed during the Kargil War in June 1999. Also during this war was the first deployment of the medium range Agni-II, apparently consisting of a single preproduction model. The Agni-II was not qualified for full production and deployment until after the second Agni-II test occurred on 17 January 2001 at 10:01 a.m. IST (Indian Standard Time) when it was tested in its final deployment configuration.

India reportedly is investigating development of an ICBM-class missile called Suriya (or Surya) with a range of over 6000 km.

There are no official figures for weapon stockpiles at any stage of development of India's arsenal. The only figures that can be offered are either explicit estimates made from considerations of India's probable ability to produce critical raw materials and considerations of likely production plans; or are unofficial statements of uncertain provenance and authenticity. To show the problems with figures of the latter sort we have only to look at the statement by K. Subrahmanyam, a leading strategic theorist, that by 1990 India had stockpiled at least two dozen unassembled weapons, versus the May 1998 estimate by G. Balachandran, an Indian nuclear researcher, that India had fewer than 10 weapons ready to be assembled and mounted on warplanes or missiles.

The types of weapons India is believed to have available for its arsenal include:

  • A pure fission plutonium bomb with a yield of 12 kt;

  • A fusion boosted fission bomb with a yield of 15-20 kt, made with weapon-grade ploutonium;

  • A fusion boosted fission bomb design, made with reactor-grade plutonium;

  • Low yield pure fission plutonium bomb designs with yields from 0.1 kt to 1 kt;

  • A thermonuclear bomb design with a yield of 200-300 kt.

All of these types should be available based on the tests conducted during Operation Shakti (Pokhran-II). It may be possible to extrapolate significantly from these device classes however without further testing. There is reasonable doubt about whether the thermonuclear device actually performed as designed. Even if this so, it does not rule out the possiblity that sufficent test data was collected to field a successful design with reasonable confidence of good performance. Interest has been expressed in the development of a neutron bomb (a very low yield tactical thermonuclear device), but this would probably require additional testing to perfect.

The most widely accepted estimates of India's plutonium production have been made by David Albright. His most recent estimate (October 2000) was that by the end of 1999 India had available between 240 and 395 kg of weapon grade plutonium for weapons production, with a median value of 310 kg. He suggests that this is sufficient for 45 - 95 weapons (median estimate 65). The production of weapon grade plutonium has actually been greater, but about 130 kg of plutonium has been consumed - principally in fueling two plutonium reactors, but also in weapons tests. His estimate for India's holdings of less-than-weapons-grade plutonium (reactor or fuel grade plutonium) are 4200 kg of unsafeguarded plutonium (800 kg of this already separated) and 4100 kg of IAEA safeguarded plutonium (25 kg of this separated). This unsafeguarded quantity could be used to manufacture roughly 1000 nuclear weapons, if India so chose (which would give it the third largest arsenal in the world, behind only the U.S. and Russia)

Indian Delivery Systems and Characteristics

           Delivery Systems

Entry into
Service

Range
(km)

Payload
(kg)

Accuracy
(m)

Launcher
Number

Warhead Number
and Type

Land-Based Missiles  

Agni-I

1999?

1500

1000

 

10?

1 x > 15 kt?; 200 kt?

Agni-II

2000

2500-3000

1000

 

3-4?

1 x > 15 kt?; 200 kt?

Agni-III

2005?

3500-5000

1000

 

3-4?

1 x > 15 kt?; 200 kt?

SS-150 Prithvi

1997

150

1000

15

20?

1 x 12 kt

SS-250 Prithvi-2

2001?

250

500-750

25

0

1 x 12 kt

Dhanush

2003?

350

500

35

0

1 x 12 kt

Aircraft

Mirage2000

1988

 

 

 

 

1 x 12 kt bomb

 

Existing Weapon Infrastructure
The center piece of India's nuclear weapons program is the Bhabha Atomic Research Center (BARC) in Trombay near Mumbai (Bombay) which is the center for nuclear weapons associated work. BARC was founded as the Atomic Energy Establishment, Trombay (AEET) on 3 January 1954 by Dr. Homi Jehangir Bhabha. Bhabha was the also the founder India's entire nuclear industry and infrastructure, and India's first Secretary of the Department of Atomic Energy (DAE) when it was created on 3 August 1954. In its early years BARC was already a very large, but primarily civilian-oriented nuclear research laboratory. When India's first nuclear device was designed and fabricated at there, the work was conducted surreptitiously (often at night) to hide it from the rest of the laboratory. But in May 2000 a watershed was reached in this tension between civilian and military work when the civilian Atomic Energy Regulatory Board (AERB) which had been exercising regulatory oversight was split off from BARC. As S. Rajagopal oberved, an expert on nuclear affairs and a professor of the Bangalore-based National Institute of Advanced Studies, this decision effectively reclassified BARC as a nuclear weapons laboratory - a laboratory with a primarily military function though also conducting civilian oriented work in a model similar to the U.S. weapons labs. But without much of the civilian oversight and management that the U.S. labs have.

BARC is the site of the two reactors used for weapons-grade plutonium production: the 40 MW CIRUS (Canadian-Indian-U.S.) reactor, and the 100 MW reactor named R-5, but usually called "Dhruva". Both of these are heavy water moderated and cooled natural uranium reactors.

CIRUS was supplied by Canada in 1954, but uses heavy water supplied by the U.S. (hence its name). The reactor is not under IAEA safeguards (which did not exist when the reactor was sold), although Canada stipulated, and the U.S. supply contract for the heavy water explicitly specified, that it only be used for peaceful purposes. Nonetheless CIRUS has produced much of India's weapon plutonium stockpile, as well as the plutonium for India's 1974 Pokhran-I nuclear test. India argued in 1974 that the contract allows its use in producing peaceful nuclear explosives, which is how it characterized this explosion, though in recent years the project director Raja Ramanna has conceded that this was a sham. CIRUS reactor achieved criticality on 10 July 1960. It can produce 6.6-10.5 kg of plutonium a year (at a capacity factor of 50-80%).

In 1977 work began on the larger Dhruva plutonium production reactor, which was developed indigenous but based on the Canadian supplied technology. It was commissioned on 8 August 1985 but startup problems caused by resonance vibrations from the cooling system damaged fuel assemblies soon required shutdown. After modifications were made (spring clips to damp fuel rod vibration) it began operating at one-quarter power in December 1986 and reached full operation in mid-January 1988. It operates at 100 MW and is capable of producing 16-26 kg of plutonium annually (at a capacity factor of 50-80%).

An additional possible source of plutonium are a number of unsafeguarded CANDU power reactors,including Madras Atomic Power Stations (MAPS, known as Madras I and II, or MAPS-I and MAPS-II); the Narora Atomic Power Stations (NAPS, known as NAPS-I and NAPS-II), and the Kakrapar Atomic Power Station (KAPS). Like CIRUS and Dhruva, the CANDU reactors are heavy-water moderated natural uranium reactors that can be used effectively for weapon-grade plutonium production. The possible production by MAPS is much larger than CIR and Dhruva combined, although the fuel burnup in power reactors of this type normally produces lower grade plutonium that is less desirable for weapons. Each power station reactor could produce up to 160 kg/yr (at a 60% capacity factor). It is uncertain how practical it is to operate MAPS for weapons grade plutonium production, although even the reactor-grade output has weapons potential. If supergrade plutonium were produced at BARC by short irradiation periods, it could be mixed with MAPS plutonium to extend the plutonium supply. As of November 1998 India had a total of 10 small power reactors operating, with 4 under construction and due to begin operation in 1999, but with 12 more planned or under construction that would boost electrical output by another 5100 MW.

Nuclear power supplied 2.65 percent of India's electricity in 1999 and this is expected to reach 10 per cent by 2005. Expectations for nuclear power growth have consistently fallen far short of goals for over 30 years, so this percentage is likely to continue to grow slowly. India's nuclear power program proceeds almost entirely without fuel or technological assistance from other countries. Partly as a result its power reactors have been among the worst-performing in the world (with regard to capacity factors), reflecting the technical difficulties of the country's isolation, but are apparently now improving significantly. Its industry is largely without IAEA safeguards, though a few plants are under facility-specific safeguards.

In February 2001 India had 14 small nuclear power reactors in commercial operation, two larger ones under construction and ten more planned. The 14 operating ones comprise:

  • Two 150 MWe BWRs from USA, started up in 1969, now using locally-enriched uranium and are under safeguards,

  • Two small Canadian PHWRs (1972 & 1980), also under safeguards; and

  • Ten local PHWRs based on Canadian designs, two of 150 and eight 200 MWe.

The separated plutonium for the 1974 test was produced at the separation plant in Trombay, near to Bombay, capable of processing 50 tonnes of heavy metal fuel/yr. Construction on the first facility there began in the 1950s, and began operating in 1964. In 1974 it was shut down for repair and expansion and reopened in 1983 or 1984. Trombay handles the fuel from both the Cirus and Dhruva reactors. India also can separate plutonium in the Power Reactor Fuel Reprocessing (PREFRE) facility. This plutonium separation plant was built at Tarapur, north of Bombay, and began operating in 1979. The plant has encountered operating problems, but India reports having overcome these by 1990. The nominal annual capacity is given as 100-150 tonnes of CANDU fuel. A much larger plant is now under construction at Kalpakkam sufficient to handle all existing reactors.

Given its immense thorium resources, India is actively interested in developing the thorium/U-233 fuel cycle. India is known to have produced kilogram quantities of U-233 by irradiating thorium in CIR, Dhruva, and MAPS reactors. Substantial production of U-233 is not practical though with natural uranium fueled reactors. The thorium cycle requires more highly enriched fuel to have an acceptable breeding ratio with the non-fissile thorium blanket. Reactor-grade plutonium from MAPS could serve as start-up fuel for U-233 plants in the future. If available U-233 is as effective a weapon material as plutonium.

India has been developing the capability to produce heavy water domestically to provide the moderator load for future reactors. The heavy water for almost all existing reactors was imported however. The 110 tonnes of unsafeguarded moderator for Dhruva and Madras I and II were ironically provided by China.

India has acquired and developed centrifuge technology and built centrifuge enrichment plants in Trombay and Mysore in the 1980s. The larger Rare Metals Plant (RMP), as it is called, at Mysore has a cascade capable of producing 30% enriched uranium in kilogram quantities, beginning in 1992-93, although reliability has been a problem. These enrichment plants appear to have no role in India's power reactor development plans, so they may be intended to offset the prestige of Pakistan's enrichment capability, or to provide additional standby weapons production capability. India has reported that it plans to build an enriched uranium reactor, and a domestically fueled nuclear submarine.

India's interest in light weight weapon design can be surmised from BARC's acquisition in the 1980s of a vacuum hot pressing machine, suitable for forming large high-quality beryllium forgings, as well as large amounts of high purity beryllium metal. India is known to manufacture tritium, and may have developed designs for fusion-boosted weapons.

India is not a signatory to NPT and has opposed the treaty as discriminatory to non-weapons states. India has previously taken the position that a world-wide ban on nuclear testing, and the production of fissionable material for weapons is called for. Except for China, which continues testing, there is now a de facto halt to testing worldwide, as well as the production of weapons grade plutonium and uranium by the US and Russia. India has shown no interest so far in restricting its own activities despite these changes in the world situation. India has also rejected offers at bilateral negotiation with Pakistan, but in December 1988 the two nations signed an agreement prohibiting attacks on each other's nuclear installations and informing each other of their locations (though not their purposes).

Planned Nuclear Forces
Nothing is publicly known about official Indian nuclear force planning, but assessments made by opinion leaders provide a context for judging the prevailing attitude in Indian government circles

India's first effort to formulate a nuclear policy and the determine the means needed to implement it was an informal but authoritative study group that was set up in November 1985 to answer queries by Rajiv Gandhi regarding defense planning. It encompassed the three services (Navy Chief of Staff Adm. Tahiliani, Army Vice Chief of Staff Gen. K. Sundarji, Deputy Cheif of Air Staff John Greene), leaders of BARC (Ramanna), the DRDO (Abdul Kalam), and the AEC (Chidambaram), and India's most prominent strategic analyst K. Subrahmanyam. The outcome of the group's deliberations was to recommend building a minimum deterrent force with a strict no first use policy. The arsenal envisioned was 70 to 100 warheads at a cost of about $5.6 billion.

In 1994 K. Subrahmanyam suggested that a force of 60 warheads carried on 20 Agnis, 20 Prithvis and the rest on aircraft would cost about Rs 10 billion over 10 years. In 1996 Sundarji suggested a cost of some Rs 27.5 billion -- Rs 6 billion for 150 warheads, Rs 3.6 billion for 45 Prithvis and Rs 18 billion for 90 Agni missiles.

Pakistan

Pakistan undertook a program to develop nuclear weapons on 24 January 1972, scant weeks after its crushing defeat by India in the 1971 Bangladesh war. On this date President Zulfikar Ali Bhutto committed Pakistan to a nuclear weapon program at a meeting held in Multan. The program initially focused on acquiring plutonium production capability through foreign assistance - in a manner similar to the Israeli and Indian nuclear programs. But following the May 1974 Indian nuclear test, the Pakistani program was ham-strung by the international restrictions on plutonium production technology that followed. The fortunes of the program turned four months later when a Pakistani national living abroad with access to highly classified foreign uranium enrichment technology volunteered to act as a spy, and pass detailed information to Pakistan. This Pakistani was Dr. Abdul Qadeer Khan, a metallurgist employed by URENCO, the tri-national European uranium enrichment centrifuge consortium.

Khan had access to detailed plans about several enrichment centrifuge designs, as well as comprehensive information about the parts suppliers used by URENCO. With this information Pakistan began purchasing enrichment components in 1975, and in early 1976 Khan returned to Pakistan to (a few months later) take control of the enrichment program. Little attention was paid to enrichment technology at the time, so the Pakistani activities escaped the notice of nations attempting to control nuclear proliferation.

Pakistan's enrichment plant, built at Kahuta, began doing enrichment on 4 April 1978. The plant was made operational in 1979 and by 1981 was producing substantial quantities of uranium. The facility was named A.Q. Khan Research Laboratories (KRL) by President Zia ul-Haq on 1 May 1981.

Pakistani work on weapon design predated both India's test and A.Q. Khan's involvement. In March 1974 Munir Ahmad Khan, head of the Pakistan Atomic Energy Commission (PAEC), formed a task force consisting of Drs. Hafeez Qureshi, Abdus Salam, Riaz-ud-Din, and Zaman Sheikh to design a nuclear explosive. This design group was based at Wah, and became known as "The Wah Group".

Preparations for a nuclear test site in the Ras Koh Hills and Kharan in Baluchistan were begun as early as 1977, and the shafts used in the 1998 tests were completed in 1980.

The Pakistan nuclear weapons program became militarized after the 5 July 1977 coup in which Army General Zia-ul-Haq siezed control of the government (the deposed Zulfikar Ali Bhutto was eventually hanged on 4 April 1979). The Pakistani military has retained exclusive control of Pakistan's nuclear weapons capability ever since, even during the periods in which it has tolerated civilian rule.

The Wah Group had a weapon design - an implosion system using the powerful but sensitive HMX as the principal explosive - ready for testing in 1983. The first "cold test" of a weapon (i.e. a test of the implosion using inert natural uranium instead of highly enriched uranium) took place on 11 March 1983 under the leadership of Dr. Ishfaq Ahmed of the PAEC. This test was conducted in tunnels bored in the Kirana Hills near Sargodha, home of the Pakistan Air Force’s main airbase and the Central Ammunition Depot (CAD).

1984 saw the arrest of Pakistani nationals for smuggling krytrons and other pulse power components useful in nuclear weapon firing systems. It was perhaps around the end of 1984 that Pakistan first achieved the capability to manufacture and test a nuclear explosive.

During the latter 80s Pakistan inexorably moved toward converting its potential capability into an actual one. The Pressler Amendment, a congressional act passed to keep Pakistan receiving aid despite its active weapons program, helped restrain Pakistan from moving beyond stockpiling enriched uranium as hexafluoride gas. The 1990 crisis with India that erupted over Indian repression in Kashmir, finally prompted Pakistan to take the last steps. In May 1990 Pakistan converted 125 kg of uranium hexafluoride to metal and reportedly manufactured seven weapon cores, putting it in the position of assembling a nuclear arsenal from stockpiled components in a matter of days. During the Kashmiri crisis at least one complete nuclear weapon is believed to have actually been assembled.

Excellent U.S. intelligence provided detailed information about the status of Pakistan's capabilities, which leaks and official discloures gradually revealed to the public. Nonetheless Pakistan refrained from officially declaring itself as a nuclear power, but at the same time went to great pains to make clear its nuclear capabilities. On 7 February 1992 Pakistani Foreign Minister Shahryar Khan stated in an interview with the Washington Post that Pakistan had the components to assemble one or more nuclear weapons. This statement went further than any made by other "non-weapon states" in admitting to the existence of a nuclear arsenal. Pakistan had previously admitted to having fabricated pits for fission weapons. In July 1993 General (retired) Mirza Aslam Beg, former army chief of staff, acknowledge that Pakistan had conducted cold tests of nuclear devices. And in August 1994, then Prime Minister Nawaz Sharif said "I confirm that Pakistan possesses the atomic bomb" although the government repudiated the statement (but admitted having the capability to make them).

In 1998, after the Indian Pokhran-II test series in May and India's open declaration of its status as a nuclear weapons state, Pakistan followed suit with its own tests. The first test was conducted in a 1 km horizontal tunnel under the mountain Koh Kambaran in the Ras Koh Hills at 10:16:17.6 UCT (+/- 0.31 sec) on 28 May 1998 (28.7919N 64.9475E +/- 0.003 deg). Official (and semi-official) descriptions of the tests said that five devices were successfully fired with a combined yield of 40 kt. Independent seismic analysis set the yield at approximately 9 kt (with a 5-20 kt possible range). The second test of a single device was fired at 06:55:00.0 30 May 1998 UCT at about 28.433 deg N 63.860 deg. The claimed yield was 18 kt, seismic estimates put it at 4-6 kt (3-11 kt maximum range).

Again following India's lead, Pakistan formally declared itself a nuclear weapons state following the 28 May tests.

Current Nuclear Forces

It is estimated that Pakistan produced produced about 210 kg (range 160 - 260 kg) of HEU up to the moratorium in 1991 [Albright and O'Neill 1998]. The current production capacity of Pakistan is approximately 110 kg per year (range 80 - 140 kg/year), and the cumulative production of HEU (less the HEU expended in the 1998 tests) is estimated at about 800 kg at the end of 2000 (range 665 - 940 kg) [Albright 2000]. Since a uranium weapon requires about 15 kg this equates to a potential for 53 weapons (range 44 - 62), although somewhat more than 15 kg may be used to produce more powerful and efficient weapons.

In April 1998 the unsafeguarded Kushab reactor began operating. This reactor is a heavy water-natural uranium reactor built with Chinese assistance and has an operating power of 50-70 MW. This reactor should be able to produce around 10-15 kg of plutonium a year at a 60-80% load factor (the fraction of the time the reactor actually operates). Through the end of 2000 approximately 10-28 kg is estimated to have been separated from the fuel, a figure that is strongly affected by how quickly the fuel is processed after irradiation, and the effectiveness of the separation plant. Pakistan has a pilot plutonium reprocessing plant called "New Labs" at the Pakistan Institute of Scientific and Technical Research (Pinstech) complex near Rawalpindi. Reportedly the New Labs facility was expanded during the 90s to handle the full fuel load from Kushab. CBS News reported on 16 March 2000 that US intelligence had found evidence (such as krypton-86 emissions) that Pakistan is reprocessing irradiated fuel from the Khushab reactor and recovering separated plutonium. Fission weapons require 4-6 kg of plutonium, so 2-7 weapons could have been manufactured from this material.

In addition to Kushab, Pakistan is also manufacturing reactor-grade graphite and has its own heavy water plant both of which may be used to build additional plutonium production reactors fueld with natural uranium. It currently possesses two power reactors - the Karachi Nuclear Power Plant (KANUPP) with an output of 137 MW electrical, and the Chasma Nuclear Power Plant (CHASNUPP) with an output of 300 MWe. CHASNUPP is a pressurized water reactor constructed by the China National Nuclear Corporation was completed in late 1995. CHASNUPP began operations in November 1999 and was connected to the power grid (run by the Karachi Electric Supply Company) on 14 June 2000. These reactors have produced 600 kg of plutonium in their spent fuel but this plutonium remains unseparated and under IAEA safeguards.

The Kushab reactor could also be used to produce tritium for boosted weapons. The production capacity for tritium would be on the order of 100 g per year if enriched uranium is used as fuel, enough to boost perhaps 20 weapons. Pakistan is known to be interested in tritium, having acquired a tritium purification and production facility, and 0.8 grams of pure tritium gas from West Germany in 1987, as well as even larger quantities of tritium from China.

According to A. Q. Khan, as well as other Pakistani scientists, the devices tested in 1998 were most of all boosted weapon designs. Pakistan has not tested a true staged thermonuclear device. This implies that Pakistan can built pure fission or boosted fission devices with yields ranging from sub-kiloton up to perhaps 100 kt. Higher yields are possible, but suffer from the delivery weight limits of its existing missiles and probable limits to Paksitani minaturization technology. China has provided a complete tested designs for a 25 kt pure fission weapon.

Pakistan has been active since the early 80s in acquiring ballistic missiles and missile technology. This has resulted in the acquisition and development of an imposing list of missile systems (see table below). These systems are all basically derivatives of Chinese and North Korean technology, and in many cases are simply missile systems imported from abroad (the M-9 and M-11) or assembled from foreign components (the Ghauri and Ghauri-2 missiles). The Ghauri designation refers to a muslim ruler -- Shahabuddin Ghauri -- who repeatedly raided Hindu cities during the middle ages.

In October 2000 it was reported that the Pakistan Atomic Energy Commission's (PAEC)National Defence Complex (NDC) had begun serial production of its 'indigenously-built' solid-fuelled Shaheen-1 ("Eagle" or Hatf-4) intermediate-range ballistic missile (IRBM), according to local media reports quoting senior defence officials. The Shaheen-1, with a declared range of 750 km, has officially been flight tested only once, in April 1999. Pakistani defence officials also said the test of the road-mobile missile was successful [Farooq 2000], [PTI 2000].

Currently the only missiles that are beleived to be in service are the Hatf-1 and Hatf-2, the Chinese supplied M-9 abd M-11, the Shaheen-1, and possibly the Ghauri/Ghauri-2 (basically North Korean supplied No-dong missiles). On 13 June 1996 the Washington Post quoted a leaked CIA draft document as saying Pakistan had "probably finished developing nuclear warheads" for Chinese-supplied M-11 missiles. If true, it may indicate Chinese assistance minaturizing the warhead design.

Summary of Pakistan's Missiles

Name

Alternate Names

Range (km)

Payload (kg)

Test Firings

Developer

Status

Hatf-1

 

80

500

April 1989

KRL

In service since 1996

Hatf-1A

 

100

500

February 2000

KRL

In service?

Hatf-2

 

260-300

500

April 1989

KRL

In service?

Hatf-3

 

800

 

3 July 1997?

KRL?

Never deployed

Hatf-4

Shaheen-1

750

1000

15 April 1999

NDC

Deployed September 2000

Hatf-5

Ghauri-1

1100-1500

700

6 April 1998

KRL/DPRK

 

Hatf-6?

Ghauri-2

2000

500-700?

14 April 1999

KRL/DPRK

 

Hatf-7

Shaheen-2

2400-2500

1000

Declared ready for test Sept. 2000

NDC

 

 

Ghauri-3? (Ghaznavi?)

3000

 

15 August 2000??

KRL/DPRK?

 

M-9

CSS-6/DF-15

600-650

500

 

China

Supplied?

M-11

CSS-7/DF-11

300

500-800

 

China

30-80 supplied

Notes

1. NDC: National Defence Complex
2. KRL: A.Q. Khan Research Laboratories
3. DPRK: Democratic People's Republic of Korea (North Korea)
4. Hatf-2 may be a Pakistani manufactured M-11
5. Shaheen-1 believed to be based on Chinese M-9 technology and design
6. Shaheen-2 believed to be based on Chinese M-18 or DF-21 technology and design
7. Ghauri and Ghauri-2 are believed to be DPRK (North Korea) No-dong missiles or No-dong based designs

 

Back to Top

Disclaimer   Copyright